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ABSTRACT

Emerging network-attached resource disaggregation architecture

requires ultra-low latency rack-scale communication. However, cur-

rent hardware offloading (e.g., RDMA) and user-space (e.g., mTCP)

communication schemes still rely on heavily layered protocol stacks

which requires the translation between PCIe bus and network proto-

col, or complex connection/memory resource management within

RNICs, inevitably bringing latency overhead.

We argue that PCIe Non-Transparent Bridge (NTB) is a supe-

rior high-speed in-rack network technology to interconnect PCIe-

attached machines or devices with the same PCIe fabric since no

translation is needed between PCIe and network protocol. We

present NTSocks, the first user-space in-rack interconnect over
PCIe fabric which virtualizes native NTB into high-level network

functionalities for rack-scale systems with software-hardware co-

design. NTSocks provides (1) compatibility with a fast socket-like

abstraction, (2) multi-thread scalability using a core-driven dat-

aplane model, and (3) fair and efficient resource sharing with a

multi-tenant isolation mechanism. Even though PCIe NTB is orig-

inally designed for device communication across PCIe domains,

NTSocks shows a flexible user-level indirection with performance

close to bare-metal NTB while providing common network stack

features. In the evaluations with latency-sensitive Key-Value Store,

NTSocks achieves better latency by up to 24.5× and 1.58× than

kernel and RDMA socket, respectively.
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1 INTRODUCTION

Emerging resource disaggregation architecture highlights the de-

mand for ultra-low latency and high throughput rack-scale com-

munication behind datacenters for high-quality online services and

real-time analysis [56, 21, 19, 25, 59, 23]. The lower the latency,

the better [39, 20]. There is a growing trend that, high-density

modern computing (e.g., TPU [3]) and storage (e.g., Non-Volatile

Memory [62]) hardware are deployed and disaggregated in a rack

[19], termed as rack-scale computers [66], which shift the poten-

tial bottleneck from computation to network [65, 40]. The latency

requirements of rack-scale networks need to be maintained in the

range of 3-5us [19]. However, many Ethernet-based studies on rack-

scale networks [9, 36] are dependent on either workload which

limits generalization, or a centralized controller which compro-

mises performance.

Recent efforts therefore proposed hardware offloading like re-

mote direct memory access (RDMA) [24] or user-space IO like

DPDK [30] to significantly reduce latency by kernel-bypassing

techniques. Yet, these approaches still rely on heavily layered pro-

tocol stacks, and the translation overheads between protocol layers

are inevitable. For example, while RDMA over Converged Ethernet

(RoCE) [24] allows the network card to directly access the memory

of remote machines, one-way data movement in Figure 1(a) requires

at least four translations among PCIe bus, RDMA protocol (i.e.,

IBTA protocol) and UDP. Thus, it is hard to avoid latency overhead.

Meanwhile, the Ethernet-based access to PCIe-attached peripherals

across machines in a rack further increases the frequency of data-

path translations. Additionally, protocol stack hardware offloading

schemes also require complex connection/memory resource man-

agement within RNICs, which further adds communication over-

head. For example, RDMA exploits limited RNIC memory to cache

physical-virtual memory mapping tables and connection contexts,

resulting in higher tail latency under cache miss [33].

Can we get rid of protocol translation overhead and complex

in-NIC resource management for the rack-scale networks to fur-

ther reduce the communication latency? We argue that using PCIe

fabric as the high-speed networking technology is an ideal choice

since no translation between PCIe and network protocol is required

and complex in-NIC resource management is bypassed (as shown

in Figure 1(b)). Specifically, PCIe non-transparent bridge (NTB)

as a special device makes it possible to interconnect independent

machines to the same PCIe fabric like a bridge [43, 53], although

PCIe was originally used to connect various PCIe devices to a CPU-

centric computer system [46]. Due to the well-known inefficiency
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Figure 1: PCIe fabric avoids the translation between PCIe

protocol and network protocol, compared to RDMA.

(e.g., high system call overhead) [30, 37] of the kernel-space im-

plementation (e.g., ntb_hw_intel) [6], this paper focuses only on

user-space NTB (e.g., DPDK polling mode driver) [51] to bypass

the kernel’s complexity. By mapping the shared memory space be-

tween independent systems via reliable transaction layer protocol

(TLP), NTB allows direct access to the memory of remote machines

with extremely low latency (e.g., 2.3∼5.6× speedups than RDMA in

Figure 3) and high bandwidth (close to the PCIe bandwidth limit).

However, since PCIe NTB is originally designed for device com-

munication (e.g., device sharing [43]) across independent PCIe do-

mains, there are three critical challenges when it is actually used

for rack-scale systems.

First, there is an abstraction mismatch between the interfaces

provided by native NTB (i.e., user-space NTB) and that desired

by applications. Unlike Ethernet-based TCP/IP, native NTB lacks

general-purpose network function abstraction. It is challenging to

craft expected abstractions to provide compatibility while preserving

the performance benefits of native NTB.

Second, native NTB lacks a scalable dataplane for concurrent

workloads. This is because the original drivers default to have

exclusive control over an NTB device [43]. This calls for a new

dataplane design to efficiently multiplex NTB transport with multi-

core scalability.

Third, the current NTB architecture lacks performance isola-

tion between applications. As applications vary in traffic patterns,

NTB resource multiplexing is certainly not immune to Head-Of-

Line (HOL) blocking and load imbalance between different multi-

plexing units.

In this paper, we present NTSocks, the first user-space in-rack

interconnect over PCIe fabric that provides ultra-low latency, com-

patible, scalable, and isolated network functionalities for rack-scale

systems. The core of NTSocks is an indirection proxy (i.e., data plane)

running on each machine to virtualize NTB transport resources

(e.g., shared remote memory) within the same PCIe fabric in a light-

weight manner, and a separate software monitor (i.e., control plane)

to enable an Ethernet-like control path. The separate architecture at

end host removes the control path (e.g., address, routing) from the

data path (e.g., data traffic) to preserve NTB performance benefits.

Based on this architecture, we further propose three key ap-

proaches to better balance multiple targets, as follows:

• Generic and high-performance socket-like abstraction with com-

mon network functions by using: i) lock-free ringbuffers over

NTB memory via Remote Write primitive (§ 4.1), ii) transparent

zero-copy support (§ 4.5), iii) and adaptive receiver-driven flow

control for preventing message overflow (§ 4.4).

• Dataplane core-partition model (§ 4.2), which allocates cores for

each partition on demand (e.g., one core for multiple partitions),

to trade-off betweenmulti-core scalability and CPU efficiency. Par-

tition is a new abstraction for scalability on multi-core machines

that divides the limited NTB-enabled shared memory into mul-

tiple parallel units, and each unit (i.e., a partition) is core-driven

and multiplexed by a set of connections.

• Hierarchical performance isolation mechanism on top of partition

(§ 4.3) with: i) a per-connection message slicing for eliminating

head-of-line (HOL) blocking among intra-partition connections,

and ii) inter-partition load balancing at connection granularity

which uses a round-robin connection distribution based on work-

loads (e.g., number of per-partition active connections).

By building NTSocks on DPDK NTB Polling Mode Driver (PMD),

we find that NTSocks outperforms the prior state-of-the-art net-

work stacks [33, 44] with acceptable overhead while realizing high

scalability and isolation (§ 6). For example, NTSocks achieves dra-

matically better latency by up to 20.4× and 2.3×, and lower tail

latency by up to 22.7× and 2.6× than Linux TCP and libVMA [44],

respectively. We further port typical Key-Value Store (KVS), Nginx

and Apache benchmarking tool (ab) to NTSocks with little or even

no modification on them. By benchmarking KVS with various YCSB

workloads [7], NTSocks achieves better latency by up to 24.5× and

1.58×, compared to TCP Redis and RDMA respectively. For Ng-

inx, NTSocks outperforms Linux TCP by up to 6.7×. We will open

source NTSocks at https://github.com/NTSocks/.

2 BACKGROUND AND MOTIVATION

2.1 PCIe Non-Transparent Bridge

The PCIe Non-Transparent Bridge (NTB) is a special type of PCIe

bridge device that can connect multiple separate computer systems

to the same PCIe fabric like a "bridge". PCIe NTB maps the memory

address of the remote host to the address space of the local NTB de-

vice through the address translation of the reliable PCIe transaction

layer protocol on the hardware and maps the memory address of

the local NTB device through memory-mapped I/O (MMIO) to the

memory space of the local host. Thus, PCIe NTB allows local appli-

cation processes to directly access the far memory without the CPU

involvement of the remote host, providing ultra-low latency and

high throughput close to PCIe bandwidth. The PCIe interconnect

is originally used to connect various PCIe devices to a CPU-centric

computer system, and maps the device memory and host mem-

ory to the same memory address space[35]. And PCIe NTB makes

it possible to enable high-performance inter-host communication

based on PCIe interconnection. From the perspective of hardware

availability, PCIe NTB can be embedded in the CPU processor [57,

63], or can be implemented in the PCIe switch chip [58, 2], allowing

pluggable NTB adapters and external cables to setup PCIe intercon-

nection. From the perspective of topology, a PCIe cluster switch

integrated with a PCIe NTB chip can interconnect dozens of ma-

chines at high speed [43], which is suitable for relatively flat and

simple intra-rack communication. Typical network topology with

PCIe NTB deployment is shown in Figure 2.

Emerging DPDK NTB PMD (Poll-Mode Driver) [51, 46] exploits

several optimizations for performance improvement. For example,

Intel DPDK reduces the number of PCIe transactions and increases

PCIe bandwidth by disabling interrupts, adopting write combining

[28], and polling write-back descriptors in host memory [46, 5].
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Figure 2: The in-rack network with PCIe NTB fabric.

 0

 1

 2

 3

 4

 5

 6

 7

8 32 128 512 2048 8192

P5
0
/P

9
9
 L

at
en

cy
 (

μ
s)

Payload Size(B)

raw-ntb P50
raw-ntb P99
RDMA-write P50
RDMA-write P99

Figure 3: User-space PCIe NTB can achieve better latency

than RDMA (Mellanox ConnectX-5 RNIC).

Userspace NTB PMD also leverages Intel Data Direct I/O Technol-

ogy (DDIO) to accelerate the data movement between the NTB

device and CPU cache, which delivers lower latency and higher

bandwidth [29, 15]. We focus on poll-enabled userspace NTB in

this paper.

2.2 Rack-Scale Network

With the emerging network-attached resource disaggregation archi-

tecture [56, 21, 19, 25, 59, 23], rack-scale networks behind datacen-

ters are expected to provide ultra-low latency and high throughput

for high-quality services and applications [12, 47, 66]. To cope

with the increasing scale-out demand, putting high-density modern

hardware into a rack is an inevitable trend [66]. This is evidenced

by recent rack-scale computers (e.g., Intel RSA [27], TPU Pods

[3], FireBox [1]) or storage (e.g., Facebook Lightning [50], EMC’s

DSSD [14], Decibel [45]). Recent works [66, 61] further leverage

programmable switches to enhance rack-scale systems. The above

innovations pose a challenge for faster and more efficient rack-scale

communication [11, 36, 40, 9].

Consequently, recent efforts propose hardware offloading like

RDMA [24, 20, 13] or user-space IO like DPDK [30, 17] for latency

reduction in a kernel-bypassing manner. For example, Pangu [20]

introduces production-level intra-podset lossless RDMA to acceler-

ate multi-role oriented cloud storage systems. mTCP [30] provides

a user-level TCP/IP library OS with high performance DPDK packet

IO over Ethernet devices.

However, these approaches still rely on heavily layered proto-

col stacks, introducing inevitable translation overhead between

protocol layers for rack-scale networks, especially the translation

between the PCIe and network protocol. For example, one-way data

movement over RoCE requires at least two translations between

PCIe bus and RDMA IBTA protocol, and two translations between

UDP and IBTA protocol. This unavoidably results in non-negligible

latency overhead. Besides, accessing PCIe-attached peripherals in a

rack via Ethernet further increases the number of protocol transla-

tions and requires the CPU involvement of the remote host. Mean-

while, complex in-NIC resource management required by hardware

offloading schemes further adds communication latency. So, how

to eliminate the above protocol translation and bypass complex

in-NIC resource management for in-rack networks is essential to

achieve lower latency.

2.3 PCIe Interconnect for Rack-Scale Network

Opportunity: PCIe NTB. Since no translation between PCIe pro-

tocol and network protocol is required, NTB-enabled lightweight

PCIe fabric can provide ultra-low latency and high throughput close

to PCIe bandwidth, and is an ideal high-speed intra-rack network

technology compared to RDMA. Based on PCIe protocol, PCIe NTB

fabric naturally does not require translation between PCIe and net-

work protocol. The PCIe protocol consists of a physical layer, data

link layer, and transaction layer from the bottom up, which is a data

communication based on the Transaction Layer Packet (TLP). By

providing reliable transmission and QoS (Quality of Service, QoS)

mechanisms through PCIe transaction layer and data link layer

protocol, PCIe NTB can ensure that the one-sided read and write

operations of each data packet are transactional [42]. Figure 3 shows

that PCIe NTB can achieve 2.3∼5.6× latency speedup than RDMA,

and the one-way transmission delay of PCIe NTB can even reach

about 500 ns. The main latency overhead of PCIe NTB comes from

the TLP-based address translation and routing between different

PCIe domains within the PCIe NTB chips [49].

Challenges: Although providing ultra-low latency, native PCIe

NTB lacks compatible, scalable, and isolated network functionalities.

Since PCIe NTB was originally designed for device communication

across PCIe domains, there are three critical challenges when PCIe

NTB is directly used for rack-scale applications, as follows:

Challenge 1: Mismatch in Communication Abstractions.

A critical reason why NTB is not friendly and compatible is the

communication abstraction mismatch between the native NTB

stack and what applications desire. Developers expect an easy-

to-use connection-level network function abstraction (like TCP

socket or RDMA Queue Pair) to focus on implementing applica-

tion logic. However, as native NTB has a default assumption that

the NTB endpoint device is exclusively controlled by the device

driver to achieve secure device sharing between machines [43],

it adopts a single-user-oriented programming model and lacks a

multi-connection-oriented abstraction, which needs to be tightly

coupled with upper-layer applications.

For example, on the control plane, through complex register-

based negotiation between NTB endpoints, PCIe NTB exchanges

shared memory address metadata mapped by both ends. On the

data plane, PCIe NTB only supports a single application process to

operate the mapped remote memory and does not support asyn-

chronous event-driven communication like POSIX epoll. Complex

NTB operations without any connection-friendly interfaces make

it difficult to optimize applications, which requires developers to

modify applications by carefully choosing different NTB opera-

tion options and configuration parameters. Recent work [51, 32]

provides a relatively low-level queue design, which is far from

compatible connection-oriented abstraction.
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Figure 4: NTSocks architecture.

Challenge 2: Lack of Scalable NTB Dataplane. Native NTB

does not provide any dataplane-oriented multi-core scalable mecha-

nisms for efficient NTB transport across various applications. Rack-

scale systems usually require the coexistence and combination of

multiple applications. However, due to the aforementioned exclu-

sive assumption, user-space NTB only allows intra-process trans-

port sharing with an exclusive tightly coupled style, which has lim-

ited sharing scope. Meanwhile, it is also challenging to efficiently

utilize NTB memory resources among multiple applications.

Challenge 3: Lack of Performance Isolation. Current NTB

architecture lacks multi-tenant performance isolation with efficient

NTB resource sharing across applications from a global perspective.

Without global management, an NTB-based program can easily

lead to the malicious occupation of large amounts of NTB memory,

which likely impacts the QoS of other NTB-enabled processes.

As different applications have different traffic patterns, naive

NTB queue sharing inevitably introduces performance interfer-

ence like HOL blocking and load imbalance among multiplexing

units, which cannot guarantee fairness across applications. For in-

stance, latency-sensitive flows dominated by small messages can

likely be blocked by bandwidth-sensitive flows dominated by large

messages, termed HOL blocking. In addition, the load imbalance be-

tween different multiplexing units is also challenging when facing

concurrent workloads.

3 OVERVIEW OF NTSOCKS

3.1 NTSocks Architecture

To address the challenges, we design NTSocks, a user-space rack-

level network architecture over native PCIe NTB with efficient

resource sharing. The core of NTSocks is to introduce a user-level

indirection at the end host with a software-hardware co-design

which transforms the native NTB stack into high-level abstraction

and bridges the semantic gap between them.

Figure 4 shows the NTSocks architecture. NTSocks has three

main components – user-level network library (libnts), dataplane

runtime proxyNTB Proxy (NTP), andNTSocks control planeMonitor

(NTM). These three components are interconnected through the

inter-process SHM channel.

Libnts, located inside the application process, provides socket-

like generic APIs for user-level applications with no (or negligi-

ble) modification. It provides compatible and high-performance

communication abstractions via three methods: a connection-level

abstraction that contains per-socket lock-free TX/RX SHM queues

Figure 5: A NTSocks-enabled data transfer example.

and pools (§ 4.1), a packet-level module that performs message slic-

ing and merging for fairness (§ 4.3), and an NTB memory sharing

model that optimizes memory copy between application buffers,

TX/RX SHM and NTB buffers and provides three interface modes

of origin-nts, shm-nts, and direct-nts for different cases (§ 4.5). Lib-

nts coordinates with NTP to realize fast data-path operations like

read()/write().

NTP runs a single instance on each host and works with all

libnts-based applications on the same host to provide NTB trans-

port networking from a global perspective. As a dataplane runtime,

NTP performs efficient, scalable, and isolated NTB resource sharing

via several modules: a connection manager (Conn Ctx Mgr) that

efficiently caches the connection contexts (e.g., TX/RX SHM Queue

Pairs (QP)) and packet routing under the guidance ofNTM (§ 4.1), an

NTB buffer managing module (NTB Buf Mgr) that organizes limited

NTB memory as lock-free ringbuffers and provides enqueue and

dequeue operations with native NTB primitives for efficiency (§ 4.1),

a Partition abstraction that binds dedicated core-tied TX/RX worker

threads to each NTB ringbuffer and performs packet forwarding

of a group of connections for multicore scalability (§ 4.2), a load

balancing module (LB) that realizes an inter-partition connection

distribution for performance isolation (§ 4.3), and a receiver-driven

adaptive Flow Control that enables reliable connection-level trans-

mission (§ 4.4). NTP implements the dataplane resource policies

(e.g., QoS) by controlling the TX/RX SHM queues between applica-

tions and NTP.

NTM also runs as a single instance on each host and performs

control-plane actions for all libnts-based applications. It talks to

peer-side NTM with TCP socket to exchange link resource meta-

data (e.g., link status, link selection and connection establishment

(handshake) ,and disconnection (wave). It globally manages user-

level port allocation for each socket. By treating PCIe NTB fabric

as first-order in-rack communication, NTM leverages PCIe NTB

message registers [51] to negotiate NTB metadata such as Partition

mode and the number of Partitions. If the PCIe link is not available,

in-rack communication will fall back to the TCP link with the as-

sistance of NTM. NTM also works with libnts and NTP via SHM

to complete handshake (e.g.,connect(), accept()) or wave (e.g., shut-

down(), close()) by creating or destroying connection-level entries

like SHM QP.

We discuss the thread model of NTSocks in detail in § 5.1.

4 NTSOCKS DESIGN

We have proposed overall NTSocks architecture with microkernel-

style global resource management in the previous section. In this

section, we demonstrate critical designs on the NTSocks data path

235



An Ultra-Low Latency and Compatible PCIe Interconnect for Rack-scale Communication CoNEXT ’22, December 6–9, 2022, Roma, Italy

(i.e., libnts and NTP) to address design trade-offs for compatibility,

multi-threaded scalability, and performance isolation.

4.1 Generic Communication Abstraction

To solve the issue of mismatched communication abstractions, we

aim to realize general-purpose programming abstractions while

maintaining high performance close to bare-meta NTB. Therefore,

we combine multiple datapath optimizations to design a flexible

socket-like non-intrusive interface (Figure 5).

4.1.1 Connection-level Abstraction.

Since NTSocks intercepts every Linux socket call via libnts, trans-

lates, and forwards them to NTB devices via NTP, it is essential to

have an efficient SHM-based connection-level abstraction between

libnts and NTP that provides compatibility while preserving high

NTB performance. This section presents the lock-free design of

such connection-level abstraction (i.e., per-connection TX/RX SHM

Queues and Pools).

Lock-free Connection-oriented TX/RX SHM Queue Pair.

When establishing a connection, a unique corresponding TX/RX

SHM queue pair between NTP and libnts will be created. As a sig-

nificant design principle is to avoid the use of locks on the data

path, basic push()/pop() operations on the SHM IO queues are im-

plemented in a lock-free manner. For throughput-sensitive scenar-

ios, we also realize lock-free batch operations (e.g., bulk_push(),

bulk_pop()) that reduce the number of atomic operations on SHM

queues to improve throughput. Users can customize the batch size

depending on the application’s demands.

Per-connection TX/RX SHM Pools. The naive implementa-

tion of one SHM IO queue is to copy data from the input buffer to

the SHM buffer when enqueue and copy data from the SHM buffer

to the output buffer when dequeue. This brings intolerable perfor-

mance reduction because of the frequent push()/pop() operations

between libnts and NTP. To this end, we realize lock-free TX/RX

SHM pools for each connection to remove redundant data copies.

Specifically, when enqueue, the input buffer is allocated from the

SHM pool, and the corresponding offset index is pushed to the SHM

queue. When dequeue, the poped offset index is mapped to the cor-

responding SHM buffer as the output buffer. After the forwarding

process is completed, the allocated SHM buffer will be recycled to

the SHM Pool.

4.1.2 Shared Lock-free NTB Ringbuffer.

NTB Ringbuffer with efficient NTB verbs. PCIe NTB allows

the local CPU to directly access the mapped remote memory with

one-sided Remote Write and Remote Read verbs. We observe that

PCIe Remote Read is much more expensive than Remote Write

since read/write remote system’s memory is through the PCI bus

[51]. We also find that write-combining achieves higher throughput

than write-back, since write-combining combines multiple TLPs

(Transaction Layer Packets) into one PCIe transaction and reduces

the number of PCIe memory write transactions [51, 42]. Thus, the

above observations of NTB verbs motivate us to leverage Remote

Write with write-combining and Local Read to design a lock-free

ringbuffer over NTBmemory, to preserve the ideal ultra-low latency

and high throughput of data forwarding in NTP.

Mode 50% RTT 99% RTT Request Rate

SP2C 2.66 µs 2.88 µs 5.8 Mrps

SP1C 3.96 µs 7.29 µs 6.6 Mrps

Table 1: NTSocks’ 32-Byte message performance with SP2C

and SP1C Partition mode. Note thatMrps indicates million

requests per second.

We organize the limited NTB memory into a ringbuffer with

64-bit write_index/read_index where Remote Write and Local Read

are exploited to perform push-like TX and pop-like RX operations,

respectively. To be more specific, for the TX operation of local-

host on the remote NTB ringbuffer, the TX worker thread in NTP

forwards the message from per-connection TX SHM queue to the

remote NTB buffer via Remote Write and updates local write_index.

For the RX operation of localhost on the local NTB ringbuffer, the

RX worker thread in NTP polls the header metadata msg_len of the

element pointed by the current read_index to find the next message,

forwards the next message to the corresponding RX SHM queue,

and updates the local read_index.

To tell whether the remote NTB ringbuffer is full, the sender

exploits a local shadow read_index to track the remote read_index.

Specifically, before the sender performs message TX each time,

it uses the local next write_index and shadow read_index to esti-

mate the proportion pending_rate of pending messages. Once the

pending_rate is greater than 1/2, the sender will mark the meta-

data of the next message to request synchronization of the remote

read_index. For the receiver, whenever finding the above mark in

the next message, it will actively update the local latest read_index

to peer-side shadow read_index via Remote Write.

To keep the consistency between per-message payload and meta-

data, the TX worker in NTP writes the payload before metadata as

the per-message metadata is 8 bytes and an 8-byteMOV instruction

behind NTB Remote Write is atomic.

4.2 Partition Abstraction

Realizing scalable NTB resource sharing is crucial because of the

limited NTB memory and the end of Dennard Scaling. However, our

initial design of the NTSocks dataplane was to organize the entire

NTB memory into a globally unique shared ringbuffer. We design

a scalability verification experiment between two NTB-connected

servers: The sender concurrently sends 12 fixed-size pressure flows

to the receiver, and we calculate the average flow completion time

(FCT) based on the measured all FCTs. Figure 6(a) shows that the

initial design with Non-Partition cannot scale well.

To unlock the multicore scale-out performance of the dataplane,

NTSocks further employs Partition abstraction. The core of Parti-

tion is that the limited NTB memory is split into multiple parallel

units, and each unit is bound to dedicated TX/RX CPU cores to

be responsible for forwarding packets for a group of connections.

The result in Figure 6(a) shows that as the number of partitions

increases, the average FCT decreases nearly linearly until the num-

ber of Partitions in NTSocks increases to 6. In addition, to verify

the impact of the number of Partitions on the request rate in small

message cases and the application throughput (i.e., Goodput) in
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Figure 6: With the Partition mechanism, NTSocks can achieve high data-plane parallelism under concurrent CPU core-bound

flows. Note that t indicates the number of core-bound threads.

(a) The execution flow of origin-nts. (b) The execution flow of shm-nts. (c) The execution flow of direct-nts.

Figure 7: By optimizing memory copy between application buffers, RX/TX SHM and NTB buffers, three data transfer modes

(i.e., origin-nts, shm-nts and direct-nts) are designed to meet the needs of various scenarios. Different modes have different

execution flows when sending mem_1 tomem_2.

large message cases, we adjust the number of Partitions and con-

currently send 32-Byte and 32KB messages from the sender to the

receiver, respectively. Request rate and application throughput are

measured in a real-time manner. The results in Figure 6(b) and 6(c)

demonstrate that NTSocks with proper Partition settings can easily

achieve saturated request rate and throughput along with better

multi-core scalability under concurrent load.

Improve CPU efficiency. The above Partition design needs to

use two dedicated cores as TX/RX workers respectively, called Sin-

gle Partition with 2 Cores (SP2C). Although SP2C mode friendly en-

sures ultra-low latency (<5us) and tail latency for latency-sensitive

small-message cases, it sacrifices CPU efficiency. So, we further pro-

pose a Single Partition with 1 Core (SP1C) mode. SP1C mode only

requires one dedicated core to alternately do TX/RX operations.

We evaluate the performance of the two modes under concurrent

pressure flows. Table 1 shows that compared to SP2C, SP1C mode

introduces acceptable latency overhead in 50% and 99% tail latency.

This is because the dataplane worker thread in SP1C mode needs

to switch between data packet TX and RX tasks. Table 1 also shows

that SP1C mode even achieves a higher small-message request rate

than SP2C due to better CPU locality. We further find that, just

like SP2C, SP1C mode can also saturate the PCIe NTB bandwidth

as the message size increases. In practice, users can choose SP2C

for latency-sensitive cases while SP1C for throughput-sensitive

cases. Without the special declaration, the paper uses SP2C mode

by default.

4.3 Performance Isolation

Next, for performance isolation across applications, we leverage

a message slicing and merging design for Intra-Partition fairness

while a Round-Robin connection distribution strategy for Inter-

Partition load balancing.

Intra-partition fairness. A group of connections shares the

same Partition and corresponding TX/RX workers, which means

that latency-sensitive flows with small messages are likely blocked

by BW-sensitive flows with large messages. To this end, the TX

worker is required to forward messages from the per-connection

TX SHM queue with a limited batch size during each round of

polling. Meanwhile, a message slicing and merging are essential

to split a large message into a set of fixed-size (mtu size) packets,

which can achieve fairness between hybrid small-message and

large-message flows. The question is, where does NTSocks perform

the slicing/merging? To prevent the message slicing/merging from

affecting the TX/RX efficiency of NTP, we place it within the libnts-

enabled application thread. Furthermore, we extensively verify and

analyze the fairness between small and large flows reusing the

same Partition in the experiments in § 6.4. And it is proved that the

head-of-line blocking issue within one Partition can be effectively

eliminated by using connection-level message slicing mechanism.

Inter-partition load balancing. With multiple Partitions in

NTSocks, which Partition should we distribute the incoming new

connection to? Load imbalance between Partitions will impact the

overall quality of service (QoS) and reduce the efficiency of NTB

transport. Closely coordinated with intra-partition message slicing

and merging, a Round-Robin connection distribution can efficiently

balance inter-partition load.

4.4 Receiver-Driven Flow Control

To make connection-level transmission more reliable, NTSocks em-

ploys receiver-driven adaptive flow control. This aims to avoid the

overflow of the per-connection RX SHM queue. Although NTB is

a lossless fabric, we cannot guarantee that the connection-level

SHM receive queue is lossless. During NTP on the receiver side

receives/distributes data packets, once the available length of SHM

receive queue triggers the congestion threshold, the congestion

signal will be generated and transmitted from receiver to sender
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through one dedicated control ringbuffer based on NTB memory.

Then sender can adaptively adjust the send rate on the TX SHM

queue based on the current congestion degree.

4.5 Zero Copy

From a high-level perspective, the SHM buffer employed by non-

intrusive libnts (called origin-nts) acts as an indirection layer be-

tween application buffers and NTB buffer. To meet the needs of

various scenarios, we realize three modes of origin-nts, shm-nts, and

direct-nts by optimizing memory copy between application buffers,

SHM buffers, and NTB buffers. In particular, origin-nts realizes

non-intrusive interfaces, direct-nts intrusively provides zero-copy

support, and shm-nts is a compromise between them. The detailed

execution flows of a data transfer over different modes are shown

in Figure 7.

5 NTSOCKS IMPLEMENTATION

We implement NTSocks in C language, including three components:

NTP, libnts and NTM. Based on the DPDK NTB polling mode driver,

we implement data plane component NTP with about 2500 lines of

C code (LoCs). The runtime library libnts can be directly linked to

the application program to provide all POSIX socket-related func-

tion calls, and its logic implementation uses about 3700 LoCs. The

control plane NTM runs on each machine as a daemon process,

stores user-defined control plane information, and provides IP port

allocation, access control, fault migration, and TCP fallback capabil-

ities. It takes about 4100 LoCs to implement NTM. The above three

components all rely on a customized general function library libnts-

utils implemented by about 4000 LoCs, which provides functions

such as inter-process SHM communication protocol, SHM pool,

hash function, and so on. NTSocks currently supports 64-bit X86

architecture, adapting to other platforms which needn’t change lots

of code. The entire NTSocks system runs as a user-mode process

in the Linux system environment without any changes.

5.1 Thread Model Implementation

Figure 8 shows how libnts, NTM, and NTP interact with each other.

There are several critical SHM queues and threads used to realize

efficient coordination between the above three components. With

runtime library libnts, applications realize the control plane and

data plane operations with NTM and NTP, respectively.

For control plane, NTM exploits Local Req Thread and Ctrl Queue

to handle libnts’ requests, e.g., socket allocation socket(), port bind-

ing bind(), backlog initialization listen(), active handshake connect(),

and socket recycling close(). Local Req Thread also performs custom

security policies like an access control list (ACL). Peer Req Thread

within NTM mainly listens to remote connection requests (SYN ),

instructs NTP to initialize the corresponding connection context

and TX/RX SHM queues (IO Queue), and then pushes the client

socket to Accept Queue where libnts calls accept() to obtain the

socket.

For the data plane, NTP contains three critical threads: TX, RX,

and FC Thread. For data TX, the application invokes libnts’ write()

to push data in App Buffer to per-socket TX IO Queue. TX Thread

polls all connections in a round-robin manner, pops packets from

per-connection TX IO Queue, adds routing data to the per-packet

Figure 8: NTSocks thread model.

header, and pushes the packets to remote NTB ringbuffers via native

NTB primitives. If the POLLOUT event is marked by the connection,

a writable event will be generated into the Event Queue and notify

the corresponding socket. For data RX, RX Thread pops packets

from local NTB ringbuffers by poll, queries the mapped connection

context by parsing packets, and pushes the packets to per-socket

RX IO Queue. If the POLLIN event is marked by the connection, a

readable event will be generated into the Event Queue and notify the

socket to call read(). FC Thread also provides a reliable connection-

oriented flow control with an NTB control ringbuffer. Figure 5

visually shows the above transfer process.

5.2 Data Path Optimization

Zero Copy. The core of zero copy in NTSocks is to expose the re-

mote NTB buffer to application processes through one VFIO driver

[51]. There are two key steps required to allow local applications to

access the NTB space of the opposite end: First, the application pro-

cess needs to obtain the VFIO file description (FD) of the local NTB

device. Second, the application processmaps the device-bound phys-

ical memory address to the local virtual memory address by calling

mmap() with the above VFIO FD. The offset and size of remapped

memory are determined by the vfio_region_info structure of the

local NTB device. NTP can directly send the obtained FD to the

application process through one Unix socket.

Data packet batch forwarding. On the critical data path, each

dequeue/enqueue operation on the SHM queue pair per connection

requires an atomic operation to ensure transaction consistency.

NTSocks supports batch forwarding of packets on the queue to im-

prove message throughput. One batch of enqueueing or dequeuing

N packets can reduce atomic operations from N to 1. Socket write()

in libnts enqueues the sliced packets into the corresponding TX

SHM queue with a specified batch size in the data TX direction.

When the CPU core of the corresponding partition within NTP

polls the TX SHM queue of the connection, batch-size packets are

dequeued with one atomic operation and forwarded to the NTB

ringbuffer. Data TX direction has a similar process.

Runtime NTSocks.With microkernel-style NTSocks, one RTT

introduces about 500ns IPC latency. In pursuit of the ultimate ultra-

low latency, we also support a tightly coupled implementation,

termed Runtime NTSocks, where the NTP component is tightly

integrated into libnts-based application processes to eliminate the

IPC overhead. We verify the latency reduction brought by Runtime

NTSocks in § 6.2.1.
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Communication between intra-host application processes.

The communication between application processes in the tradi-

tional host is usually based on the loop-back traffic transmission

of the Ethernet card. It will occupy a large amount of local host

PCIe bus bandwidth in the case of high concurrent internal-host

traffic load, thereby reducing the peak throughput of PCIe-based

communication between PCIe NTB-based hosts [31]. Therefore,

NTSocks uses SHM channels instead of Ethernet loopback traffic

for intra-host communication to eliminate the performance degra-

dation caused by the above PCIe interference.

6 EVALUATION

This section mainly evaluates the performance and overhead of

NTSocks. It is intended to answer the following questions:

• How much performance gain can NTSocks achieve compared

to other network protocol stack socket systems? How does the

internal mechanism of NTSocks affect the observed performance?

(§ 6.2)

• Can NTSocks achieve multi-core performance scalability com-

pared to typical network stacks? (§ 6.3)

• Can NTSocks ensure multi-tenant performance isolation? (§ 6.4)

• Can the communication benefits of NTSocks improve the end-

to-end performance of real-world application systems? (§ 6.5)

6.1 Methodology

Testbed setup. The testbed mainly runs on PCIe NTB and RoCE

networks. Each machine has two 32-core Intel Xeon Gold 5218

CPUs, 64 GB of RAM, PCIe GEN 3×16 hardware (including a PCIe

NTB adapter), and 100Gbps Mellanox CX-5 single-port RNIC. We

use the 80Gbps PCIe NTB reference adapter by Intel which is built

with Microsemi Switchtec PM853x PFX PCIe GEN-3 chipset [26].

The OS is Ubuntu 18.04.5 LTS with Linux 5.1.3. Unless otherwise

specified, NTSocks applies Single Partition with 2 Cores (SP2C)

mode by default.

The testbed, deployed with PCIe NTB, consists of two servers

that are equipped with PCIe NTB adapters and interconnected

with a back-to-back topology. Since PCIe NTB is a point-to-point

communication, the one-hop latency with the PCIe switch on the

data plane could be negligible [43, 42]. So, the latency overhead of

one-hop PCIe topology based on PCIe NTB switches is almost the

same as that of a back-to-back PCIe connection.

Schemes compared. The comparison of NTSocks, Raw NTB

and compatible RDMA sockets (such as LibVMA [44]) shows that

NTSocks works best. It is verified that NTSocks can provide a

virtualized PCIe NTB network for multiple upper-layer applications

with minimal performance loss. We also compare the performance

of NTSocks with the widely deployed Linux kernel socket (Linux

Socket) and eRPC.

6.2 Baseline Micro-benchmark

We focus on two basic performance metrics for micro-benchmark:

latency and throughput. For communications that support network

socket abstraction (i.e., NTSocks, libVMA and Linux TCP), we imple-

ment a unified benchmark platform. The platform starts to collect

runtime latency/throughput and aggregate them after a sufficient

number of warm-up data transmissions. Non-intrusive communi-

cation library with POSIX socket support can be easily used to run

the benchmark by loading the dynamic link library through the sys-

tem variable LD_PRELOAD. We use ib_write_lat and ib_write_bw

provided by perftest to test the latency and throughput of one-side

RDMAWrite with poll mode. We implement the benchmark tool

ntb-bench-tool based on raw NTB poll-based transmission, which

imitates the evaluation process for one-side RDMA in perftest. We

will show inter-host communication performance in this section.

6.2.1 Latency. We build a data transmission program similar to

Ping-Pong to measure and record the round-trip transmission la-

tency of different message sizes (i.e., 8B∼4KB). We focus on median

latency and 99% tail latency (P99 latency). To ensure the reliabil-

ity of the results, we measure the latency 100000 times for each

message size.

NTSocks achieves ultra-low communication latency. Figure

9(a) and 9(b) show median latency and P99 latency. Due to the inter-

process communication (IPC) and memory copy between libnts and

NTP, the translation between sockets and NTB primitives result

in additional latency of fewer than 1.7µs in small messages (<=256

bytes) and of about 2.8µs in larger messages (>256 bytes and <=4KB).

The median latency of eRPC is 1.66∼3.44× that of NTSocks, and

NTSocks achieve better P99 latency than eRPC by up to 3.49×.

NTSocks achieves better median and P99 latency by up to 2.3× and

2.6× than RDMA socket libVMA, and both of them are non-intrusive

network socket libraries. In addition, the latency of NTSocks is an

order of magnitude lower than that of Linux Socket, because the

kernel-mode protocol stack packet processing is inefficient [30, 37],

which is not friendly to latency. Noted that median and P99 tail

latency have similar behaviors and root causes. Due to eliminating 4

inter-process communications between App and NTP in one round

trip, the latency of Runtime NTSocks is about 500ns lower than

that of NTSocks.

6.2.2 Throughput. The throughput performance is reflected in the

round-trip request rate for small messages (i.e., Request Rate) and

the application-level throughput for large messages (i.e., Goodput).

For the request rate, we use the Ping-Pong data transmission pro-

gram with 10,000 outstanding requests (Outstanding Requests) to

measure the amount of processed message per second (i.e., Mil-

lion Requests Per Second, (Mrps)). For the application throughput

under large message cases, we use the one-way bandwidth of data

transmission from the client to the server. To ensure the stability

of the measurement, the throughput benchmark of each message

size runs for 20 seconds.

NTsocks achieves high and stable throughput. Figure 9(c)

and 9(d) show the Request Rate of small messages and the Good-

put of large messages. In the case of a small message request rate,

NTSocks is about 2∼3× higher than Linux TCP and eRPC. This is

because the protocol stack that NTSocks relies on is more light-

weight, which eliminates the translation overhead between the PCIe

protocol and the network protocol, and bypasses the system kernel.

Because RDMA socket libVMA uses small message batch processing

to greatly increase throughput [37, 44], libVMA has a higher request

rate than NTSocks. However, the small-message batch processing

optimization of libVMA hardly brings throughput gains with gradu-

ally increasing message sizes, and the overhead is mainly caused by
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Figure 9: Performance comparison between NTSocks and other typical communication stacks.

Figure 10: The breakdown of one-way latency (8B payload

size) for NTSocks (origin-nts).

memory copy and lock contention introduced by the translation of

sockets to RDMA primitives, so libVMA has a higher small message

request rate but lower application-level throughput (i.e., Gootput)

under large message cases than NTSocks.

Regarding large message throughput, we find that the saturated

bandwidth of NTSocks after convergence is only 74.3Gbps. The

reason is that the NTB adapter we use is an experimental platform

provided by the manufacturer. The design specification of the built-

in non-transparent bridge chip particles is 80Gbps. But the design

specifications of the released commercial NTB chips are aligned

with PCIe bandwidth. We believe that NTSocks can easily approach

the theoretical value of PCIe bandwidth under commercial NTB

adapters. Despite this, NTSocks has higher bandwidth and reaches

saturation earlier than eRPC. When the payload size is 8 KB, the

bandwidth of NTSocks is even 3.22× larger than that of eRPC.

Although users usually do not want small messages to saturate

the bandwidth and pay more attention to the latency [34], when

the message size is small, such as 2 KB, NTSocks can still achieve

throughput of more than half of saturated bandwidth. In this case,

the limitation of throughput is just using only one partition of

NTP, and more partitions can be added to solve the throughput

bottleneck.

6.2.3 One-way latency breakdown. In order to profile the latency

overhead in detail between NTSocks and raw NTB, we implement

echo benchmark programs and measure the one-way transmission

latency by dividing the collected round-trip echo latency by 2. Com-

pared with raw NTB, the overhead of NTSocks mainly includes 4

parts: (1) NTB ring buffer transmission latency in the NTP partition,

(2) lightweight protocol handling overhead in NTP, (3) SHM-based

inter-process communication overhead between NTP and libnts

application handling, (4) libnts runtime handling overhead. We di-

rectly use PCIe NTB WRITE primitive to build an echo program

over the DPDK PMD driver for raw NTB, while using origin-nts to

build an echo program for NTSocks.

The overhead of the NTSocks components is acceptable

compared to raw NTB. Figure 10 shows the breakdown of one-

way latency. Compared with the raw DPDK NTB, NTSocks parti-

tioned NTB ring buffer transmission only adds a negligible latency

overhead, which mainly comes from the overhead of maintaining

the write_index and read_index. However, the internal protocol han-

dling overhead of NTP, the inter-process communication between

NTP and libnts, and the runtime handling of libnts do introduce

some latency overhead. Protocol handling overheadmainly includes

the encapsulation and analysis of the header of the data packet. The

inter-process communication overhead is mainly reflected in the

atomic operation of entering and leaving the per-connection SHM

queues and the inherent synchronous transmission overhead of

the SHM. The runtime handling overhead of libnts mainly includes

allocating SHM from the SHM pool and copying data from the

application buffer to the allocated SHM during write(), reclaiming

SHM and copying data from SHM to the Application buffer during

read(). Although the above overheads are acceptable, we believe

that these overheads can be further reduced in the future by of-

floading the NTP component into hardware like the ARM cores of

Mellanox SmartNIC.

6.3 Multiple Thread Scalability

Multi-thread performance scalability is a significant advan-

tage for NTSocks. This mainly benefits from the Partition mecha-

nism and lock-free data path in NTSocks to unlock the power of

multi-core scale-out. To verify themulti-core scalability of NTSocks,

we use multiple concurrent clients bound to the threads to send

128KB message requests to the same server, and a background

thread is used to aggregate the total throughput in a real-time man-

ner according to the throughput of each connection on the server

side. The NTSocks data plane sets 4 partitions for this benchmark.

Since the PCIe NTB adapter in the experimental environment is an

80Gbps design specification and the RoCEv2 ConnectX-5 network

card is 100Gbps, we normalize the aggregate throughput by defin-

ing bandwidth saturation rate (i.e., measured aggregate throughput

divided by hardware bandwidth capacity) to unify performance

metrics and make an intuitive comparison.

As shown in Figure 11, regarding the aggregate bandwidth sat-

uration rate under various concurrent loads, NTSocks is the best

(i.e., more than 90%), followed by Linux TCP (i.e., more than 78%),

and RDMA socket libVMA is the worst (i.e., only up to 22%). The

aggregate throughput of NTSocks is very stable with the increas-

ing number of concurrent threads, and the bandwidth saturation

rate is between 90.4% and 93.6%. Due to lock contention on shared

NIC queues [37, 44], the aggregate throughput of libVMA shows
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Figure 15: End-to-end median latency of key-value stores with various YCSB workloads.

a nearly linear decrease and then tends to be stable as the num-

ber of concurrent threads increases. For example, compared to 2

threads, the throughput of libVMA with 4 threads is reduced to

1/2. Meanwhile, the bandwidth saturation rate of Linux Socket is

between 77.6% and 87.6%. Although Linux Socket has improved

throughput by using TCP Segmentation Offload (TSO) and TCP

window scaling optimizations, its bandwidth saturation rate is still

lower than NTSocks. This is mainly due to the high overhead of

system calls and multiple memory copies induced by the heavily

layered protocol stack in Linux TCP [30].

6.4 Performance Isolation

NTSocks ensures the isolated performance of multiple ap-

plications or tenants with different traffic patterns by co-

designing inter/intra-partition hierarchical performance iso-

lation mechanism. To evaluate the effect of multi-tenant perfor-

mance isolation in NTSocks, we use the cumulative distribution of

the transmission latency of a small flow that continuously sends

2KB messages as the observation target, while using one large flow

that continuously sends 64KB messages as the background traffic.

Regarding inter-partition fairness in NTSocks, we run the small

and large flows in different partitions and compare the performance

isolation effect of NTSocks with Linux TCP and libVMA. Regarding

intra-partition performance isolation, we particularly run the small

and large flows in the same partition.

NTSocks achieves the best inter-partition fairness between

large and small flows, and has a one-order-of-magnitude lower

latency jitters than Linux TCP in Figure 12. NTSocks achieves al-

most the same latency distribution in the case of small flow with

background traffic and no background traffic. The latency gap be-

tween the two is about 0.36µs (0.072∼0.535µs), and the P99 tail

latency gap is only 0.53µs. Linux TCP shows the worst performance

isolation effect, and the latency gap in the two experimental sce-

narios is about 4.83µs (0.759∼7.216µs), and the P99 tail latency gap

is as high as 7.216µs. This is mainly due to the well-known ineffi-

ciency of kernel TCP protocol stack in the data path. Meanwhile,

Figure 13 shows thatNTSocks withmessage slicingmechanism

achieves near-optimal intra-partition performance isolation

between small and large flows. NTSocks without slicing encoun-

ters dramatically higher tail latency due to HOL blocking issue.

These gains benefit from the hierarchical isolation mechanism pro-

posed by NTSocks(§ 6.3), which eliminates the head-of-line (HOL)

blocking of NTB link multiplexing through the inter/intra-partition

co-design, and achieves better load balancing among partitions.

6.5 Real-world Applications

In this section, we evaluate the performance improvement of real-

world applications, to demonstrate the high performance, flexibility,

and ease of use for NTSocks. We build a Key-Value Store (KVS)

and Nginx with NTSocks, representative small-message, and large-

message cases.

6.5.1 Key-value Store. Key-Value Store is a typical time-sensitive

application scenario that focuses on small messages. We apply the

prevalent MurmurHash algorithm to build a general key-value

store system based on the POSIX socket, which supports high-

performance Read (R), Update (U), Insert (I), and delete opera-

tions. We use libnts and libVMA to implement code non-intrusive

NTSocks (nts-kv) and RDMA socket (RDMA-kv) support in a dy-

namic link library by Linux environment variable LD_PRELOAD.

We evaluate KVS using YCSB workloads [7] including R100, R95I5,

R90U10, and R50U50.

NTsocks achieves the best performance improvement for

Key-Value Store. Figure 15 shows the median latency with in-

creasing key-value size under different YCSB workloads. We find

that both NTSocks (nts-kv) and libVMA (RDMA-kv) have an order
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of magnitude better end-to-end latency than Linux TCP. Mean-

while, even if libVMA has used the performance advantages of

RDMA to accelerate key-value storage, NTSocks still achieves a

57.6% lower median latency than libVMA. NTSocks is better than

the RDMA socket libVMA library and has powerful generalization

ability even under different traffic patterns. Particularly, Figure

15(a) shows that compared to libVMA, NTSocks has a 10.4%∼52.7%

lower median latency under the YCSB R100 workload. In Figure

15(b), NTSocks achieves 8.7%∼57.6% lower median latency than

libVMA under YCSB R95I5 workload. Also, Figure 15(c) and 15(d)

demonstrate that NTSocks achieves 10.3%∼51.7% and 10.2%∼38.4%

lower median latency than libVMA under YCSB R90U10 and R50U50

workloads, respectively. This is because NTSocks minimizes the

translation overhead from connection-level socket abstraction to

memory-semantic PCIe NTB primitives by employing multiple

lock-free and efficient data path designs (e.g., shared lock-free NTB

ringbuffer and Partition abstraction).

6.5.2 Nginx HTTP Server and ab. Nginx is an open-source and

high-performance event-driven HTTP server. We use direct-nts to

replace the corresponding interface of Nginx that achieves zero-

copy and low-overhead. Only 150 LoCs are required to build Nginx

with NTSocks direct-nts, which also demonstrates the compatibility

and flexibility of NTSocks’ zero-copy interfaces. We further employ

the well-known Apache benchmarking tool [18] to generate the

HTTP file requests. LibVMA does not work with unmodified Nginx

due to fork. We compare the end-to-end Nginx HTTP file transfer

performance with NTSocks and TCP.

Due to the zero-copy design of NTSocks, the file transfer latency

of Linux TCP is 3.88∼6.69× that of NTSocks when the payload size

is between 8KB and 32MB in Figure 14. As the file size increases, the

memory copy overhead increases, and the file transmission latency

gap between NTSocks and Linux TCP gradually increases. When

the payload size is 32MB, Nginx over NTSocks has 24.5ms less

latency than TCP. In a word, NTSocks also brings significant

performance gains in large-message cases.

7 DISCUSSION

Abstraction for rack-scale communication. Although memory

semantic is a candidate abstraction for rack-scale systems, NTSocks

focuses on socket abstraction for two reasons. First, socket abstrac-

tion is the most widely used communication primitive for modern

rack-scale applications. Much existing work aims at improving

compatibility and socket performance by building Socket abstrac-

tion over user-space network stack (e.g., f-stack [4], Seastar [55]

and mTCP [30]) or commodity RDMA hardware (e.g., libVMA [44]

and SocksDirect [37]). Second, regarding memory-semantic use

cases (e.g., distributed shared memory [61]), PCIe NTB inherently

supports memory-semantic communication, so it is easier to ex-

tend NTSocks to enable lightweight unified memory address space

across multiple hosts. We leave it to future work.

Inter-rack communication. NTSocks aims to utilize ultra-low

latency PCIe interconnect to accelerate intra-rack communication

scenarios where the entire applications runs in a rack. Alternatively,

inter-rack communication scenarios might split the entire applica-

tion traffic into inter-rack and intra-rack traffic. In order to handle

such scenarios, NTSocks would also need to be augmented to scale

beyond a rack by potentially exploiting the hybrid Ethernet/PCIe

switch [60]. Meanwhile, we found that PCIe NTB memory can be

registered by RDMA, which would provide an inter-rack fast path

for hybrid RDMA/PCIe deployment.

SmartNIC-offloaded data path. NTSocks is currently just an

experimental proof of exploring to use ultra-low latency PCIe inter-

connect for in-rack networking. With the popularity of SmartNICs

[16, 52, 8], software CPU overhead in NTSocks can be eliminated

by offloading the data plane components (e.g., Partition scheduling

and flow control within NTP) to cost-effective ARM cores. We will

explore it in future work.

8 RELATEDWORK

Advanced PCIe and network systems.Modern advanced PCIe in-

terconnect techniques like PCIe CXL [10], Gen-Z [54] and NTB [43,

53] demonstrate great opportunities for disaggregation-oriented

rack-scale communication due to its hardware properties of ultra-

low latency, high bandwidth, cache coherency, and remote memory

access. With these benefits, network systems design using PCIe

interconnect is an important topic. Servers in Aquila [21] use PCIe

to connect to Pods for their NIC functionality. RASHPA [41] imple-

ments a complex PCIe-based network framework using FPGA and

Linux-based software stack, which primarily focuses efficient data

acquisition system and cannot saturate the bandwidth like NTSocks

does. Although Marlin [60], P-Socket [64] and NTSocks enjoy simi-

lar motivations and all propose a PCIe-based Socket abstraction for

application compatibility, both Marlin and P-Socket lack the con-

siderations of multi-tenancy performance isolation and multi-core

scalability required by modern rack-scale systems. Furthermore,

they are based on kernel-space PCIe-based design, which inevitably

introduces system calls and interrupts overhead. In comparison,

NTSocks focuses on a full user-space PCIe interconnect design for

compatible, scalable and isolated rack-scale communication.

PCIe-enabled device sharing and disaggregation. Several

works use advanced PCIe interconnect to facilitate resource sharing

and disaggregation [42, 22, 38]. SmartIO [42] leverages PCIe NTB

for efficient remote IO device sharing at the device driver layer for

typical virtualization scenarios, which has a different motivation

than NTSocks. Further, SmartIO lacks considerations for compat-

ibility and dataplane multi-core scalability which is essential for

general rack-scale systems. Huaicheng et al. [38] propose a PCIe

CXL-based memory disaggregation with memory semantics for

public clouds to resolve DRAM inefficiency induced by platform-

level memory stranding while preserving high performance. In

comparison, in addition to supporting memory semantics inher-

ently enabled by PCIe NTB, NTSocks focuses on socket abstraction

for wider generality. So, NTSocks is orthogonal and complementary

to these works.

Rack-scale communication. As online services require strict

Service-Level Objective (SLO), many work on rack-level communi-

cation behind data center networks has been studied in academia

and industry [66, 9, 47, 48, 40, 45, 11, 36, 59]. These studies achieve

microsecond-level latency and million-level throughput by design-

ing network routing and congestion control algorithms [9, 11] or

programmable switches [66, 45]. NTSocks is orthogonal to these

works because it creatively uses high-speed PCIe NTB interconnect
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to provide rack-scale systems with an easy-to-use, fast, scalable,

and isolated network architecture. Compared with the works of

protocol stack hardware offloading, NTSocks reduces translation

between protocol layers by providing a lightweight protocol stack,

and further reduces network transmission latency.

9 CONCLUSION

In this paper, we present NTSocks, an ultra-low latency and light-

weight network stack over advanced PCIe fabric for disaggregation-

oriented rack-scale communication. It employs a microkernel-style

architecture to enable compatibility, scalability, isolation, and effi-

cient PCIe resource sharing required by rack-scale communication.

NTSocks demonstrates that an efficient user-level indirection can

achieve close-to-bare-metal NTB performance while addressing

three critical challenges when applying advanced PCIe connectivity

for rack-scale networks. Evaluations with real-world applications

show that NTSocks dramatically outperforms the art-of-the-state

network stacks.
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